154 research outputs found

    Energy Efficient Spectrum Sensing for State Estimation over A Wireless Channel

    Full text link
    The performance of remote estimation over wireless channel is strongly affected by sensor data losses due to interference. Although the impact of interference can be alleviated by performing spectrum sensing and then transmitting only when the channel is clear, the introduction of spectrum sensing also incurs extra energy expenditure. In this paper, we investigate the problem of energy efficient spectrum sensing for state estimation of a general linear dynamic system, and formulate an optimization problem which minimizes the total sensor energy consumption while guaranteeing a desired level of estimation performance. The optimal solution is evaluated through both analytical and simulation results.Comment: 4 pages, 6 figures, accepted to IEEE GlobalSIP 201

    A Scalable Hybrid MAC Protocol for Massive M2M Networks

    Full text link
    In Machine to Machine (M2M) networks, a robust Medium Access Control (MAC) protocol is crucial to enable numerous machine-type devices to concurrently access the channel. Most literatures focus on developing simplex (reservation or contention based)MAC protocols which cannot provide a scalable solution for M2M networks with large number of devices. In this paper, a frame-based Hybrid MAC scheme, which consists of a contention period and a transmission period, is proposed for M2M networks. In the proposed scheme, the devices firstly contend the transmission opportunities during the contention period, only the successful devices will be assigned a time slot for transmission during the transmission period. To balance the tradeoff between the contention and transmission period in each frame, an optimization problem is formulated to maximize the system throughput by finding the optimal contending probability during contention period and optimal number of devices that can transmit during transmission period. A practical hybrid MAC protocol is designed to implement the proposed scheme. The analytical and simulation results demonstrate the effectiveness of the proposed Hybrid MAC protocol

    Real-Time Misbehavior Detection in IEEE 802.11e Based WLANs

    Full text link
    The Enhanced Distributed Channel Access (EDCA) specification in the IEEE 802.11e standard supports heterogeneous backoff parameters and arbitration inter-frame space (AIFS), which makes a selfish node easy to manipulate these parameters and misbehave. In this case, the network-wide fairness cannot be achieved any longer. Many existing misbehavior detectors, primarily designed for legacy IEEE 802.11 networks, become inapplicable in such a heterogeneous network configuration. In this paper, we propose a novel real-time hybrid-share (HS) misbehavior detector for IEEE 802.11e based wireless local area networks (WLANs). The detector keeps updating its state based on every successful transmission and makes detection decisions by comparing its state with a threshold. We develop mathematical analysis of the detector performance in terms of both false positive rate and average detection rate. Numerical results show that the proposed detector can effectively detect both contention window based and AIFS based misbehavior with only a short detection window.Comment: Accepted to IEEE Globecom 201

    Forces inside a strongly-coupled scalar nucleon

    Full text link
    We investigate the gravitational form factors of a strongly coupled scalar theory that mimic the interaction between the nucleon and the pion. The non-perturbative calculation is based on the light-front Hamiltonian formalism. We renormalize the energy-momentum tensor with a Fock sector dependent scheme. We also systematically analyze the Lorentz structure of the energy-momentum tensor and identify the suitable hadron matrix elements to extract the form factors, avoiding the contamination of spurious contributions. We verify that the extracted form factors obey momentum conservation as well as the mechanical stability condition. From the gravitational form factors, we compute the energy and pressure distributions of the system. Furthermore, we show that utilizing the Hamiltonian eigenvalue equation, the off-diagonal Fock sector contributions from the interaction term can be converted to diagonal Fock sector contributions, yielding a systematic non-perturbative light-front wave function representation of the energies and forces inside the system.Comment: 30 pages, 21 figure

    A Lightweight Sensor Scheduler Based on AoI Function for Remote State Estimation over Lossy Wireless Channels

    Full text link
    This paper investigates the problem of sensor scheduling for remotely estimating the states of heterogeneous dynamical systems over resource-limited and lossy wireless channels. Considering the low time complexity and high versatility requirements of schedulers deployed on the transport layer, we propose a lightweight scheduler based on an Age of Information (AoI) function built with the tight scalar upper bound of the remote estimation error. We show that the proposed scheduler is indexable and sub-optimal. We derive an upper and a lower bound of the proposed scheduler and give stability conditions for estimation error. Numerical simulations demonstrate that, compared to existing policies, the proposed scheduler achieves estimation performance very close to the optimal at a much lower computation time

    Energy-Efficient Spectrum Sensing for Cognitive Radio Enabled Remote State Estimation Over Wireless Channels

    Get PDF
    The performance of remote estimation over wireless channels is strongly affected by sensor data losses due to interference. Although the impact of interference can be alleviated by applying cognitive radio technique which features in spectrum sensing and transmitting data only on clear channels, the introduction of spectrum sensing incurs extra energy expenditure. In this paper, we investigate the problem of energy-efficient spectrum sensing for remotely estimating the state of a general linear dynamic system, and formulate an optimization problem which minimizes the total sensor energy consumption while guaranteeing a desired level of estimation performance. We model the problem as a mixed integer nonlinear program and propose a simulated annealing based optimization algorithm which jointly addresses when to perform sensing, which channels to sense, in what order and how long to scan each channel. Simulation results demonstrate that the proposed algorithm well balances the sensing energy and transmission energy expenditure and can achieve the desired estimation performance
    • …
    corecore